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Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 0 0 5 ,  India 

Received 28 March 1989 

Abstract. The ideal Fermi gas in a finite volume is studied in the low-temperature regime 
where the thermal correlation length is comparable to the size L of the system. Physical 
quantities such as the density of fermions and the appropriate ordering susceptibility show 
oscillatory fluctuations around a smooth background as L is varied. These are investigated 
numerically and analytically. The amplitude of the fluctuations depends on the observable 
in question and on the container shape. Finite-size scaling does not hold directly for 
thermodynamic quantities but is recoverable by averaging the mean-squared fluctuations 
over an appropriate range in L. 

Physical properties are known to be affected strongly when the size of a system is 
reduced sufficiently. Such finite-size effects have been the subject of much interest 
(Hill 1963,1964, Fisher 1972, Baltes and Hilf 1976, Barber 1983) and have been studied 
extensively in the ideal Bose gas (Pathria 1983). The size-dependent properties of the 
ideal Fermi gas in a finite volume are also of interest from several points of view. 
First, the model caricatures certain important features of physical systems such as 
atomic nuclei (Bohr and Mottelson 1975) and small metal particles (Perenboom et a1 
1981, Kubo er a1 1984, Halperin 1986). Second, a knowledge of finite-size effects is 
required to extrapolate to the bulk (infinite-volume) limit from Monte Carlo results 
on finite systems of interacting fermions (Ceperley 1978), with the ideal gas correspond- 
ing to the high-density limit. Finally, the study of finite-size effects close to a critical 
point is of intrinsic theoretical interest (Fisher 1972, Barber 1983); as explained below, 
the ideal Fermi gas in the bulk is critical at zero temperature, so that interesting effects 
occur at low temperatures in the finite system when the size is comparable to the 
thermal correlation length. 

We consider a system of non-interacting spinless fermions of mass m at temperature 
T and chemical potential p in a bounded three-dimensional region R of volume V. 
The Hamiltonian is 

x= Eia:ai 
I 

where is the energy of the single-particle state i, and a: and ai are the corresponding 
fermion creation and annihilation operators. Both and the single-particle wavefunc- 
tion 4 i ( r )  = (rla:lO) depend on the region R and the boundary conditions. We deal 
mainly with two geometries: a cubic box with periodiic boundary conditions, and a 
sphere with an impenetrable surface (Dirichlet boundary conditions). We denote the 
characteristic length of R by L; e.g. the edge length of the cube is 21rL, whereas the 
radius of the equal volume sphere is (~T’)’’~L. 
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In the bulk limit L +  00, the system exhibits critical behaviour at low temperatures 
in the sense that the correlation length and an appropriate susceptibility diverge as 
T + 0. For T << p, the two-point correlation function rp,T( r )  defined as (&,) is given 
by 

Here k F = J 2 m p / h 2  is the Fermi wavevector and &= 2 p / ( r T k F )  is the correlation 
length. [ governs the exponential decay of the amplitude of I‘F,T(r) for large r, and 
diverges as T + 0. Further, consider the response to adding the term 

-h% = - h  d 3 r ( e i q “ u ~ + ~ c )  (3) J 
to X. (A similar term with q=O is added on in the study of the ideal Bose gas 
(Bogoliubov 1970).) The corresponding susceptibility 

i a  x q = - - ( +  >I V a h  ’ h+o 

is found by direct calculation to be 
2 tanh((s, - p ) / 2 T )  

xq = 
(Eq-P)  

(4) 

We see for 141 = kF that as T + 0 .  This divergence, along with the non-trivial 
dependence on q, again indicates that the bulk Fermi gas is critical at T = 0. 

In finite systems we investigate the behaviour of two thermodynamic quantities: 
the density of fermions (which in the bulk is a regular function of T for T<c p ) ,  and 
the ordering susceptibility X q = k ,  (which is singular in the bulk as T + 0). The density 
of fermions is given by 

=-I 1 dENn(E)  sech2- E - l c  
4T 2T 

where 

(7) 
1 
V i  

N n ( E )  =- c @ ( E  - E i )  

is the integrated density of states. The susceptibility xq depends on the single-particle 
wavefunctions & ( r )  also, and is found to be 

16i(q)12 
1 2 tanh( ( - p ) / 2  T )  

xq=yF ( E i - p )  

where & q )  is the Fourier transform of + i ( r ) .  
and + i (  r )  are determined by solving the free-particle Schrodinger equation 

with periodic or Dirichlet boundary conditions, the combinations eiL2 and l&(q)I’/ L3 
are left invariant if the size, but not the shape or boundary conditions, of R is changed. 
Consequently, under a dilatation by a factor A, we have the manifest scaling forms 

(9a) 

(96) 

Since 

p(L ,  p, T) = A3p(AL,  A-’p, A-’T) 

Xq(L, H T) =A-2Xq,~(AL, A-’P, A-’T). 
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Manifest scaling holds in all ranges of parameter values. In the critical regime T+O, 
L + a, additional scaling properties would be expected to emerge; below we will see 
to what extent this expectation is borne out. 

Let us recall some facts about the structure of the integrated density of states. 
Figure 1 shows the variation of Na with E for the periodic box and the hard-walled 
sphere. In both cases, Na is the sum of a smooth background Nsmooth (shown dotted 
in figure 1) and a fluctuating part. For the periodic box, Nsmooth has contributions 
from the bulk alone, whereas surface and curvature terms also contribute in the case 
of the sphere: 

where hk = JGZ. The constant gbulk = 1/6.rr2 is independent of the geometry, while 
g,,, and g,,, (which vanish for the periodic box) depend, in general, on the shape of 
R and are known analytically (Balian and Bloch 1970, Baltes and Hilf 1976). If il 
has sharp edges or corners, as in the hard-walled box, there are more terms in (10). 
Figure 1 illustrates an important point, well established for the quantum mechanical 
counterparts of classically integrable systems (Berry 1983, 1987), namely Nn( E)  dis- 
plays fluctuations on two distinct energy scales. On the finest scale, Nn has the character 
of a staircase with steps at distinct values of the eigenenergies and step heights equal 
to the degeneracies of the states. The typical step length is denoted by 6 , ( E )  (see 
figure 1) .  But also apparent in figure 1 are larger-scale fluctuations associated with 
excursions of Na on either side of the smooth curve. These oscillations correspond 
to shell effects in nuclear physics (Ramamurthy and Kapoor 1972, Bohr and Mottelson 

x i ~ - 4  

2.2 

2.0 

1.8 

2 m ~ ~ ~ / h ’  
Figure 1. The exact integrated density of states (full line) for a particle in a box with 
periodic boundary conditions and a sphere with Dirichlet boundary conditions. The dotted 
curves represent analytically calculated smooth contributions. There are two scales for 
fluctuations: S is a typical step size, while A is the size of a fluctuation around the smooth 
curve. 
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1975, Brack and Bartel 1985) and their energy scale is denoted by A , ( E ) .  The two 
scales are governed by different powers of L. The inter-energy separation S, (E)  scales 
as L-PE'-p'2, where the value of the exponent p ( > l )  depends on 0; it is equal to 
dimensionality 3 for irregularity shaped bodies (Kubo et a1 1984, Berry 1987), while 
it is between 1 and 3 for more regular bodies like the cube and the sphere. By contrast, 
A L ( E )  scales as L-'E'''; the number of discrete steps in each large-scale fluctuation 
diverges as L + 03. 

The existence of two energy scales in N n ( E )  implies two temperature regimes for 
the finite Fermi gas. In the very low-temperature region T < SL(p), thermodynamic 
behaviour is exponentially activated, and deviations of thermodynamic variables from 
their T = 0 values are described by exp[-CS,(p)/ TI with C an order unity constant 
which depends on the precise locations of energy states vis a ois p. This is the 
temperature regime addressed by conventional theories of fine particles (Perenboom 
et a1 1981, Kubo et a1 1984, Halperin 1986). But more interesting, from the point of 
view of finite-size scaling, is the intermediate-temperature regime SJp) << T - A L ( p ) ,  
as the correlation length 6 is then comparable to the size L. 

We investigated the density of fermions numerically by evaluating the sum in 6(  a )  
for the periodic cube and the sphere, noting that the energy eigenvalues in the two 
cases are determined by the sums of three squared integers and by the zeros of spherical 
Bessel functions respectively. The density p(L ,  p, T) has a smooth background part 
Psmooth(L, p, T )  defined by writing Nsmooth in place of Na in (6b). Psmooth can be 
evaluated using the low-temperature (Sommerfeld) expansion for the Fermi gas 
(Landau and Lifshitz 1958), in conjunction with (10). The fluctuation in density 

is shown in figure 2 for a particular value of the temperature between S L ( p )  and A L ( p ) .  
At such intermediate temperatures, the fine-scale fluctuations corresponding to staircase 
steps are averaged out, but pronounced fluctuations on the scale of A L ( p )  remain. 

Turning to an analytical theory of the fluctuations, we first derive an exact relation- 
ship between density fluctuations in the periodic box and the two-point correlation 
function in the bulk. Eigenstates are labelled by points p on a cubic lattice in momentum 
space, and the energy of each state is proportional to p 2 .  On using the Poisson 
summation formula (Lighthill 1958) the sum over p in (6) can be eliminated in favour 
of a sum over three integers ( T ~ ,  T ~ ,  T ~ ) ,  collectively denoted by T, with the result 

where rW,T(r )  is the bulk correlation function. The sum is over integer triplets 
( T ~ ,  rY, T~), excluding (0, 0,O) which gives the smooth bulk contribution. As we can 
see from (2), T(r) decays exponentially for r >> 6. Thus (12) provides an efficient way 
of computing pRUc. The result of keeping only terms up to Irl=6 is shown in figure 2. 
The resulting approximation displays the main features of the oscillations; by retaining 
a few more terms, the detailed structure in this range can be reproduced as well. For 
the cube with hard walls the calculation for pRUc parallels that for the periodic box, 
with the difference that the points p in momentum space are confined to the strictly 
positive octant, and are closer together than for the periodic box. The result for pfluc 
now has several terms. The leading term (in powers of L-I) is given by (12), except 
that L is replaced by 2L on the right-hand side. 

For non-cuboidal geometries it does not seem possible to obtain an exact correspon- 
dence to bulk correlation functions as in (12). But one can use the classical path 
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2 60 300 3w) 

2 m p ~ ’ / h ’  
Figure 2. Fluctuations in the density of fermions witth T =  1.475h2/2mL2 for the box and 
the sphere. The continuous curves are obtained by performing the sum in (6) numerically 
and subtracting the smooth contribution. The dotted curves represent approximations 
obtained by keeping only a few terms in (12) and (13). For the box only terms up to 171 = 6 
are kept, while for the sphere terms up to r = 5 (with five values of p for each) are retained. 

analysis of Balian and Bloch (1972) to study spectral oscillations, and thus pfluc, 
asymptotically as L + CO. However, explicit answers can be obtained only for relatively 
simple geometries. For the Sinai billiard (a periodic square with a circle cut out from 
the centre) (Berry 1981), density oscillations are proportional to pRuc for a periodic 
square in the temperature range T - A L ( p ) ,  though very different for T- aL(p).  For 
the sphere with Dirichlet boundary conditions, the result for k,L>> 1, T<c p is 

Pfluc(L, P, T )  

coth( L$/[) sin ( kFL$ + T- f)] 3 -- 
2kF5 

where 

Jsin(:F) A( t, p) = 3 ( 6 ~ ~ ) - ” ~ ( - 1 ) ‘  s i n ( 2 ~ t / p )  

and 
J, = 2 ( 6 ~ * ) ’ / ~ p  sin( a t l p ) .  
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Terms with large values of t and p are damped, and an approximation which keeps 
only a few terms works quite well as evidenced by figure 2. The beat structure apparent 
in the figure can be traced to interference between the t = 1, p = 3 and t = 1, p = 4 terms 
in (13a). 

The susceptibility ,yo shows even stronger oscillations than the density for both 
the periodic box and the sphere. In the box, ,yq depends both on the magnitude 
and the direction of q. The result for q = 0 = ( kF, 0,O) obtained by explicitly performing 
the sum in (8) is displayed in figure 3. Relatively small changes in k,L are seen to 
lead to very strong variations of xQ once t exceeds L. As in the case of fermion density 
(equation (12)), for the periodic box the Poisson sum formula leads to a rapidly 
convergent series representation for ,yq for general q :  

tanh(u q^/4x) fi sin2( ui/2) 
7T U . 4  i=l U f  

The T = 0 term in the summation in (14) gives the smooth (in L) contribution X&,,ooth, 

while the rest of the terms define the fluctuating part ,yRuc. Notice that Xsmooth and the 
amplitude of ,yfluc are both proportional to L, a property which persists for the sphere 
as well. 

In the critical region T + 0, L + 00, it is natural to first express all lengths in units 
of the interparticle spacing, which is proportional to kF1 at low temperature. This 
accomplished by choosing the factor A in (9) to be kF. Then kF3p and k;Xq (with 
141 = kF) are functions only of the reduced variables 1 = 27rTTkfL and 5 = kFt, and we can 
ask whether they assume the finite-size scaling form (Fisher 1972, Barber 1983) 

a/, 5 )  = ley(1/5) (16) 

L I I I I 

0 0.04 0.08 0.12 

T /  P 
Figure 3. The ordering susceptibility ,yq, with 0 = (k,, 0, O), for various values of k,L 
The bold curve is the bulk value x = 1/ T. The curves marked a to j are obtained from 
(8) for k , L = ( n )  10.5, ( b )  10.65, (c) 10.8, ( d )  20.5, (e) 20.65, (f) 20.8. 
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in the limit I + 00, 5 -* 00 with the ratio I/l held fixed. From (12), (13) and (14), it is 
easy to verify that 2'n2kF3pfluc = q,, and k$XRuc E S,,, do nor obey finite-size scaling. 
For instance, for the density fluctuations in the box we obtain to leading order 

where 9( T )  is the number of combinations of the set of integers ( T,, T,,, 7,) such that 
T', + T: + T: = T* holds. q,, is not of the form required by (16) because of the oscillatory 
terms in (17). Similarly, from (14) we see that S,,, has oscillatory terms which spoil 
scaling. 

However, it proves possible to recover the finite-size scaling form by averaging 
physical quantities over a range in 1. For instance, consider the root-mean-squared 
fluctuation function U(  I, l )  defined by 

where the interval A I  is small compared with 1, but large enough to contain many 
oscillations of G,,. Since scaling involves consideration of the limit I + 00, 5 -* 00 with 
1/5  fixed, we may take the window width A1 to grow as 1" with x < 1, so that Al / l+O.  
The right-hand side of (18) is then independent of Al, and u(1,l) is seen to conform 
with the scaling form (16). For the box, we have 0 = -2 and the scaling function is 
given by 

For the sphere, 0 = -1 and the scaling function is similar to (19), except that T and 
9 ( T )  are replaced by appropriate functions involving I,!J and A( r, p). 

In contrast to the decreasing amplitude of density fluctuations, the amplitude of 
fluctuations of the scaled susceptibility S,,, grows with I as rapidly as the smooth part. 
Window-averaging yields scaling forms with 0 = 1 for both the box and the sphere 
though the scaling functions are different. 

In conclusion, finite-size effects in the ideal Fermi gas at low temperatures are 
characterised by pronounced oscillations whose amplitude depends both on the shape 
of the container and on the thermodynamic quantity in question. It would be interesting 
to see if these results are altered by interactions between fermions, particularly in view 
of the fact that weak interactions which preserve the normal character of Fermi liquid 
do not affect singularities in single-particle properties significantly in the bulk. 

We are gkateful to D Dhar for useful comments on the manuscript, and to R Bhaduri, 
R Ramaswamy and C Umrigar for bringing related work to our attention. 
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